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Outline

* Review last class
+ Second-order linear differential
equations
— Homogenous equations with constant
coefficients: y’ +ay’ + by =0
— General solution has three different forms
depending on a2 — 4b
— Applications to spring-mass systems
» Overdamped and underdamped systems

Review definitions

* Ordinary versus partial

* Linear versus nonlinear

 Order of the equation

+ Homogenous versus non-homogenous

» Physical problems: rate equations and
Newton’s second law md2y/dt2 = F

» General versus particular solutions
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Review ODE Examples

Third-order, linear, d? dvy 2
homogenous dx® +5|n(x) XY=
- Second-order, non-  d’y

linear, homogenous  gx? +S'n(Y) 0

« Second-order, linear, d’ y+y e cos(x)

non-homogenous dx?
* Third-order, non-linear, d3y dy
non-homogenous o Vi 1
Northridge ‘

0

Review Separable Forms

« Simple differential equations can be
written as integrals
— Even if numerical quadrature is required
this is more accurate than numerical
solution of ODE

Yt = y=][f(xdx+C

dx
Y90 = jg(y)dy:ff(x)dx+c
dy
e .h( j x Ih(u) u
Nl)l‘tlll‘l(lgt

Review Exact Forms

« Differential equation of the form P(x,y)dx
+ Q(x,y)dy = 0 is called an exact form if
oPloy = 0Q/ox

+ Special solution process available in this
case

» May be able to find find integrating
factors if P(x,y)dx + Q(x,y)dy = 0 is not
exact

Calrforrsi Sate University
Northridge
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« First order rate equation where rate is
proportional to amount dy/dt = -ky

"y = yeth)

* General linear first order equation for

y(x): dy/dx + f(x)y = g(x) has closed form
solution shown below

¢ Cis found from initial condition
pzjf(x)dx y=e’p[C+Iepg(x)de

Californin State [niversity 7
Northridge

Review Existence/Uniqueness

+ Important because we can try numerical
solution of an ODE with no solution

» Examine dy/dx = f(x,y) with y(X;) = y, in
aregion |[x— x| <aand |y -y, <b
* Derivate is bounded: [f(x,y)| < K

+ Equation has a solution in region [x — x|
< min(a, b/K)

* Uniqueness requires |of/oy| <M

Califormia State University
Northridge

Review Second Order ODEs

* Most general d?y dy
requires numerical | g g’ V%) =0
solution

o | - d? d
Linear non %Jr p0Y 4 gy =r(x)
homogenous dx dx

* Linear d2y dy
homogenous o p(X)&w(X)y:O

» Constant 42 g
coefficient —y+a—y+ﬁy=0

dx> dx

Northridge s

Review Linear Homogenous

d’y
dx?

» A basis of solutions for this equation is
any two linearly independent solutions
y;andy,

* Yy =Cq.y4 *+ CyY, is a general solution
where ¢, and ¢, can be used to fit initial
or boundary conditions
— Initial conditions specify y(0) and y’(0)

— Boundary conditions specify y(a) and y(b)

d
+p(x)d—§+q(x)y:0

Califormia State University
Northridge

Review Constant Coefficients

« Seek solution to
d’y
dx?

2
d y+ad—y+ﬂy:0

c
dx? dx

+dﬂ+ey=0 =
dx

+ Solution is y = C,e** + Ce**
}ﬁ:fa+,/a274ﬁ 4 _—a—ya’-4p
2 2 2
+ Verified solution by substitution into
differential equation

Cabiforrsin State Lnfersity
Northridge

Special Cases

ME 501A Seminar in Engineering

» What if solutions A, and A, are a double
root (A, = A,) or complex roots?

« Complex roots: ®2 = B — (a/2)2> 0
— give two linearly independent solutions
— Can rewrite in terms of sines and cosines

* Double root: Ay = A, = —a/2
— gives only one linearly independent solution
— Must find another solution for basis

Califormia State University
Northridge
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Double Root

» Giveny,, use method called reduction
of order to find second solution y,

* Lety, =uy, sothaty,’ = u’y,+ uy, and
Y2 = Uyt 22Uy Huyy”

* Substitute intoy,"'+ ay, + By, =0

________

* Result, U’ y, +2 Uy, +uy, "+ afu’ y,+

A ey Ay S g

* ulys + By ] tuty F20y,
auy, =0

Equals zero because vy,
is a solution of the ODE 1

Cabiforni State Unhersity
Nnrlhlritlge

Double Root Il

* Solve:u”y, +2uy/+au'y, =0

* Substitute y, = e = e~*2 and define U
=u'sothaty, = (-a/2)e 2 and u” = U

* U e ™2 +2U (-a/2) e 2+ aqU 2 =0

« After division by e ~*/2 result is U’ + (-«
+aU=U=u"=0

e Ifu'=0,u=C,andu=C,x+C,s0Yv,
=uy; = (Cix + Cplyy = (Cyx + Cy) &2

Calbiforni State University
Nnrlhlritlge

Double Root Il

* Results for double root are y, = e 2 and
Y2 = (Cyx + Cy) 72

* These are two linearly-independent
solutions to our ODE
— Can use any linear combination of y, and y,
— Take C,y, and y, — C,y, as solutions

— Gives C,e 2 and C,xe 2 as the two
linearly independent solutions

— General solution is (Cx + C,) e"2

Cabiforni State Unhersity
Nnrthlridge

Complex Roots

Still have linearly independent general

case solutions: y, = e** and y, = e**

» Complex roots are —a/2 + i where i2 =
—-1and o? =B - (a/2)2>0

* Get solution with more insight by using

Euler formula for complex exponential

. aix= o
e ' CcoSs X + |.S|r.1 X _-ax a5
e e X =cos X —isin x 2
2
—-a a
N ©

Calbiforni State University
Nnrthlridge

Complex Roots Il

General solution: y = C,y, + C,y, with y, =
eandy,=e**and A = —-a/2 + i®

y= C1 e(—(xx/2 +io)X 4 CZ e(—(xx/2— iw) X

y = e—ax/2 [C1eiwx + C2 e—imx]

Apply Euler formula to ei®x and e-iox

y = e 2[C,(cos wx + i sin wx) + C, (cos wx
—isin wx)] = e ®2[(C, + C,)cos wx +i(C,
— C,)sin ox] = e 2 [Acos wx +Bsin wx]

Cabiforni State Unhersity
Nnrthlridge

Solutionstoy”+ay’+ =0

 Three cases depending on »? = B — a?/4
 Double root when B = a2/4:
—y=(Cix + Cp) e
« Complex roots when B > a?/4
—y = e ™2[Acos ox +Bsin wx]
Distinct real roots when B < a2/4
—y = C,eM* + CeMX

Azfai\/az—4ﬂ _-a

_ 2
North 2 2 4 2 “

ME 501A Seminar in Engineering
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Solvingy”+ay’+b=0

+ First determine which solution you have
based on a and B values

—-B=0a?2:y=(Cx + C,) e
—B > a?/2:y = e ™2 [Acos wXx +Bsin wx]
—B < a?2:y=C.erM + Ceh*

+ Compute o or as A, and A, as required

 Use initial or boundary conditions to
evaluate constants

Californin State [niversity
Northridge
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Example: Mechanical Systems

» Simplest system is a spring mass
system where the Hooke’s law force is
the spring constant times the displace-
ment of the spring from equilibrium

* Choose a y coordinate as follows
K —vy is zero when the spring-mass
system is in static equilibrium
—asy increases, spring length
increases and a force, F = -ky, acts
on the mass

Calrforrsi Sate Unfversity
Northridge

20

Mechanical Systems II

» From Newton’s second law, F = ma, we

obtain md2y/dx? = -ky; k units are N/m

— In standard form d2y/dx2 +(k/m)y = 0; k/m
has units of N/(m-kg) = kg-m/s? /(Fr-kg) = s2

—Here a =0 and B = k/m > a2 so we have
complex roots with @? = B - a2 =k/m-0

— Solution is e%[Asin ot + Bcos ot]

— Initial conditions determine constants:
B =y,= y(0)and A= vyo =y (0)w

-y = (Y'(0)w) sin ot + y(0) cos ot

Californin State [ niversity 21
Northridge

Alternative Formulations

+ Can make solution dimensionless by
dividing by initial displacement, y,

* yly, = Vol(my,)sin ot + cos ot, where o =
(k/m)"2 has correct units of s

* Plot shown on next chart

+ Can also write solution in terms of only
the cosine: y = C cos(wt — 3)
— Details shown on chart after next

Calrforrsi Sate University 2
Northridge

Spring-mass Oscillations

20 £\ N /\
VAR / \/ / \
10 \ //V \
M\ Va7 .\ N\
N\ NNV AN\ /e A
"W WA L/ /T N I/ /] | =
LW ANVA /] // -
JANALY S ANNA S
SN SN\ / \_/\_/

N L/ N S
Northridge »
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Alternative Formulations

* Proposed alternative with equation from
trigonometry for cos(a b)

_______

* How does tms match ongmalequatlon’?
y= ASm wt +1 B £0s wt
* Matchesif A=C sindand B=C cos 3
* This gives A2 + B2=C2sin2 § + C2 cos2 §
=C2 and A/B =(C sin 8)/(C cos &) =

wdan.d.or & =tan(A/B) = tan"(vyly, ®)
Nl)l‘tlll‘l(lgt
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» A damping (friction) force is assumed to
be proportional to velocity, y’ = dy/dt

» Damping coefficient, c, gives F =-cy’

* c units are N-s/m = kg-m/s? -(s/m)= kg/s

* Minus sign is used because force
retards motion

* Newton’s second law now becomes
md2y/dt? = —ky — cdy/dt

Californin State [niversity 25
Northridge

Solutions with Damping

+ Standard form for with damping is
d2y/dt2 + (c/m)dy/dt + (k/m)y = 0

» This is constant coefficient equation
with a = ¢/m and B = k/m

e 02— 4B =(c/m)y2—4 k/m

* k/m has units of s2

« ¢/m units are (kg/s)/kg = s, consistent
with calculation of (¢/m)? - 4 k/m

Calrforrsi Sate Unfversity 2
Northridge

Solutions with Damping Il

- d2y/dt2 + (c/m)dy/dt + (k/m)y = 0
« d2y/dt? + ady/dt + By = 0

Solutions with Damping Il

_a+ﬁ 2m \/E B [ 4ka

* d2y/dt? + (c/m)dy/dt + (k/m)y =0
« d2y/dt2 + ady/dt + By = 0

* If 4 km/c? = 1, we have a double root
with solution y = (C, + C,t)e~ct2m

* If 4 km/c2 > 1, complex roots give
solution y = g-ot2m (A sin ot + B cos ot)

Californi State Unhersity 4km
Northridge E_H = = o7

m

4m?

4__“i‘/“2_4/”_,i+ ¢ k__ ¢+ [_%m
2 2m - 2m ¢

* 4 km/c? < 1 gives two real roots (both
negative) in solution y = C,eMt + C, et

* Look at names for each solution and
alternative expression of conditions

Calrforrsi Sate University 28
Northridge

Solutions with Damping IV

+ Conditions for solutions comparing
4km/c? to 1 can be written in terms of c2
and 4km or (c/m)? and 4 k/im

 Double root occurs when c2 = 4km is
called critical damping

» Complex roots occur when c? < 4km is
called under damping

« Two distinct real roots occur when ¢2 >
4km is called over damping

» Look at each solution with initial
_conditions y(0) =y, and y'(0) = v,

e ey 29
Nl)l‘tlll‘l(lgt

Over Damping

ME 501A Seminar in Engineering
Analysis

» Two real roots, both negative

+ y=C,eMt+ Cret

oy =CyheMt + Cyhett

* Yo =Y(0) = CieM0 + Ce’0=Cy+ C,

* Vg =Y'(0) = C1,eM0 + Coh,eM0= Cj, +
Czkz, solve two equations for C, and C,

* Gy = (AaYo— Vo) (A — )

* Gy = (Vo= Myol (R —2y)

Calrforrsi Sate University 30
Northridge
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Get Dimensionless Parameters

+ Divide numerator and denominator of
C,and C, by A,
+ Substitute result for C, and C, into
original equation
+ Divide both sides of equation by y,
A Vg A
Y_ A YA et 4 Yok

ot
Yo A -1 A 1 [H
A A

31

-1 At=

il .’:r_;lﬁ:lll-l‘:unru'_-
Northridge

Over Damping Results

» Take A, to be larger solution

« Coefficients depend on km/c? and
mv,/cy,

c 4km 4k
——[1+,/1- _4m
A Zm[ c? J_l-%— 1 i

Vo Vo

) )

ak .’:r_;lﬁ:lll-l‘:unru'_-
Northridge

32

Over Damping Results Il

+ Solutions for y/y, depend on three
parameters: ct/m, km/c? and mv/cy,

+ ct/m is dimensionless time, but

exponential decay, e, has At exponent

of —ct[1 + (1 — 4km/c?)2]/2m that

depends on km/c2

Look at plots of y/y, versus ct/m with

mv,/cy, as a parameter

« Different charts for different damping

_measured as km/c?

Northridge

33

Overdamping with 4km/c® = 0.1

2 I I

18 H vr= I
dimensionless

initial velocity =

Displacement yly,

Overdamping with 4km/c2 =0.75

—v=20

vi=

dimensionless | —

initial velocity =
mvglcy,

10
20

dimensionless time ct/m

16
14 / mvolcyo
—\=20
g 12 v
£ — =10
g 1 — —\*=00
8 N s E— -
8 08 —\r=-10
o
) \ —v=20
T 06
04
02
0
02
0 1 2 3 4 5 6 7 8 9 10
dimensionless time ct/m
Overdamping 4km/c? = 0.99
16 T
T~ vi=
14
/ dimensionles
12 s initial
velocity =
1
] — V=20
£ o8 V=10
8 o6 \ —v*=0.0
g \ oo
© o4 —v*=-2.0
02 \ ——
— I ——
0
T ]
02
o 1 2 3 4 5 6 7 8 9 10

dimensionless time ct/m
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Critical Damping (c? = 4km)

« Double root: y, = (C, + C,0)e02m = C,

* ¥ = (Yo + Cot)(-c/2m)eet2m + Coeretm

* Vo =Y'(0) = (-cy,/2m) + C,

* Y =1[yo * (Vo + Cyo/l2m)tje-cram

» Boundary between over and under damp-
ing, y/y, depends on ct/m and mv,/cy,

o ylyg = [1 + vytly, + ct/2m]ect2m

e ylyy, = [1 + (2mv,/cy, + 1)ct/2m]e-cvzm

Rowileidze "

Critical Damping

16
14 Vi =
/ dimensionless
12 initial velocity =
mvolcyo
1 T
—v*=1.0
08 *=05
s v
= —vVv*=0.0
06 \ V=05
04 —v*=-10
02 &\
I ———
0
—
02
0 1 2 3 4 5 6 7 8 9 10

dimensionless time ct/m

Under Damping

o y=e%2MA sin ot + B cos ot]

o y' = (-c/2m)e’2m[A sin wt + y, cos ot] +
e°t2m[A cos ot - B sin ot]

« Initial conditions: y(0) =y, and y’'(0) = v,

* yo=€e°02mAsin 0 + B cos 0] = B

* vy =¥ (0) = (-c/2m)e<02m[Asin 0 + B
cos 0] + e<%2m[A cos 0 - B sin 0] ®

* vy = (-c/2m)B + oA

* Results: B =y, and A= (vy + ¢ yo/2m)/o

Rowibeidge ”

Under Damping Il

Divide by y, for equation in y/y,

ylyo = eP2m[(vyly, + ¢/2m)(sin wt)/o + cos ot]
o = (c/2m)(4km/c2 — 1)172

ot = (ct/2m)(4km/c2 — 1)12

(VolYo + c/2m)/w = (vylyy + c/2m) / (c/2m) /
(4km/c? - 1)V2=(2mv,/cy, + 1) / (4km/c? -
1172

yly, depends on ct/m, km/c?, and mv,/cy,

displacement

Underdamping 4kmic? =2

dimensionless time ctim

il Stae Linfversity 41

ﬁ(!;l;thridge

o e o
Underdamping 4km/c? = 10
12 ‘ ‘ ‘
1 V=20
\ o= —v*=10
08 dimensionles | __ ., _ .
AN ol Y
% 04 \\\ _ﬂﬂaz__zxgé"im)
3
2 02 \\ \ -exp(-ct/2m)
s LW | s L LT
A\
04 \V
0.6 _

o 1 2 3 4 5 6 7 8 9 10
dimensionless time ct/m
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Underdamping 4km/c? = 200

Underdamping 4km/c? = 50 '

B T I
o8 %

! —Vv*=20 T — w20
o8 | —Vv*=10 — 10
i o8 5 e —_—0t | B
06 =t vE= [——v*=0.0 | dimensioniess S
T dimensionless [——v*=-1.0 initial velocity = -
S 1 1 | -

initial velocity |— =20 L T

waee gxplcbZm)

= y n [\«., ! . L <apl-ctam) ||
: I\ F ANy o

- -exp(-ct/2m))
| [ [ | 1
|

displacemen

displacement

oot Fry = 1 1 o
o4 ] el
; o8 v 1
o 1 2 3 4 5 6 7 8 9 10
e

dimensionless time ct/m

3 4 ] 8 7 [ 8 )
dimensionless time ct/m
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