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Outline

• Review last class
• Second-order linear differential 

equations
– Homogenous equations with constant 

coefficients: y’’ + ay’ + by = 0
– General solution has three different forms 

depending on a2 – 4b
– Applications to spring-mass systems

• Overdamped and underdamped systems
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Review definitions

• Ordinary versus partial
• Linear versus nonlinear
• Order of the equation
• Homogenous versus non-homogenous
• Physical problems: rate equations and 

Newton’s second law md2y/dt2 = F
• General versus particular solutions
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Review ODE Examples

• Third-order, linear, 
homogenous
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Review Separable Forms
• Simple differential equations can be 

written as integrals
– Even if numerical quadrature is required 

this is more accurate than numerical 
solution of ODE
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Review Exact Forms

• Differential equation of the form P(x,y)dx 
+ Q(x,y)dy = 0 is called an exact form if 
P/y = Q/x

• Special solution process available in this 
case

• May be able to find  find integrating 
factors if P(x,y)dx + Q(x,y)dy = 0 is not 
exact
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Review First-order Equations

• First order rate equation where rate is 
proportional to amount dy/dt = -ky

• y = y0e-k(t-t
0
)

• General linear first order equation for 
y(x): dy/dx + f(x)y = g(x) has closed form 
solution shown below

• C is found from initial condition

    dxxgeCeydxxfp pp )()(
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Review Existence/Uniqueness

• Important because we can try numerical 
solution of an ODE with no solution

• Examine dy/dx = f(x,y) with y(x0) = y0 in 
a region |x – x0| < a and |y – y0| < b

• Derivate is bounded: |f(x,y)|  K

• Equation has a solution in region |x – x0| 
< min(a, b/K) 

• Uniqueness requires |f/y|  M
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Review Second Order ODEs

• Most general 
requires numerical 
solution

• Linear non-
homogenous 

• Linear 
homogenous

• Constant 
coefficient
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Review Linear Homogenous

• A basis of solutions for this equation is 
any two linearly independent solutions 
y1 and y2

• y = c1y1 + c2y2 is a general solution 
where c1 and c2 can be used to fit initial 
or boundary conditions
– Initial conditions specify y(0) and y’(0)
– Boundary conditions specify y(a) and y(b)
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Review Constant Coefficients

• Seek solution to

• Solution is y = C1e
1
x + C2e

2
x

• Verified solution by substitution into 
differential equation
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Special Cases

• What if solutions 1 and 2 are a double 
root (1 = 2) or complex roots?

• Complex roots: 2 = β – (α/2)2 > 0
– give two linearly independent solutions

– Can rewrite in terms of sines and cosines

• Double root: 1 = 2 = –α/2
– gives only one linearly independent solution

– Must find another solution for basis
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Double Root

• Given y1, use method called reduction 
of order to find second solution y2

• Let y2 = uy1 so that y2’ = u’ y1+ uy1’ and 
y2’’ = u’’ y1 + 2 u’ y1’ + u y1’’

• Substitute into y2’’ + αy2’ + βy2 = 0
• Result, u’’ y1 + 2 u’ y1’ + u y1’’ + α[u’ y1+ 

uy1’] + βuy1 = 0, is rearranged below
• u[y1’’+ αy1’ + βy1] + u’’ y1 + 2 u’ y1’ +    
αu’y1 = 0 Equals zero because y1

is a solution of the ODE 14

Double Root II

• Solve: u’’ y1 + 2 u’ y1’ + αu’ y1 = 0

• Substitute y1 = ex = eαx/2 and define U 
= u’ so that y1’ =  (-α /2)eαx/2 and u’’ = U’

• U’ eαx/2 + 2U (-α /2) eαx/2 + αU eαx/2 = 0

• After division by e αx/2 result is U’ + (-α
+ α)U = U’ = u’’ = 0

• If u’’ = 0, u’ = C1 and u = C1x + C2 so y2

= uy1 = (C1x + C2)y1 = (C1x + C2) eαx/2
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Double Root III

• Results for double root are y1 = eαx/2 and 
y2 = (C1x + C2) eαx/2

• These are two linearly-independent 
solutions to our ODE
– Can use any linear combination of y1 and y2

– Take C2y1 and y2 – C2y1 as solutions
– Gives C2eαx/2 and C1xeαx/2 as the two 

linearly independent solutions
– General solution is (C1x + C2) eαx/2
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Complex Roots

• Still have linearly independent general 
case solutions: y1 = e

1
x and y2 = e

2
x

• Complex roots are –α/2  i where i2 = 
–1 and 2 = β – (α/2)2 > 0

• Get solution with more insight by using 
Euler formula for complex exponential

• eix = cos x + i sin x

• e–ix = cos x – i sin x
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Complex Roots II

• General solution: y = C1y1 + C2 y2 with y1 = 
e

1
x and y2 = e

2
x and  = –α/2  i

• y = C1 e–αx/2 + ix + C2 e–αx/2 – i x

• y = e–αx/2 [C1eix + C2 e–ix]

• Apply Euler formula to eix and e–ix

• y = e–αx/2 [C1(cos x + i sin x) + C2 (cos x
– i sin x)]  =  e–αx/2 [(C1 + C2)cos x + i(C1

– C2)sin x] = e–αx/2 [Acos x +Bsin x] 
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Solutions to y’’ + αy’ + β = 0

• Three cases depending on 2 = β – α2/4

• Double root when β = α2/4:  

– y = (C1x + C2) eαx/2

• Complex roots when β > α2/4

– y = e–αx/2 [Acos x +Bsin x]

• Distinct real roots when β < α2/4

– y = C1e
1
x + C2e

2
x
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Solving y’’ + αy’ + b = 0

• First determine which solution you have 
based on α and β values

–β = α2/2: y = (C1x + C2) eαx/2

–β > α2/2: y = e–αx/2 [Acos x +Bsin x]

–β < α2/2: y = C1e
1
x + C2e

2
x

• Compute  or as 1 and 2 as required

• Use initial or boundary conditions to 
evaluate constants
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Example: Mechanical Systems

• Simplest system is a spring mass 
system where the Hooke’s law force is 
the spring constant times the displace-
ment of the spring from equilibrium

• Choose a y coordinate as follows 
– y is zero when the spring-mass 

system is in static equilibrium

– as y increases, spring length 
increases and a force, F = -ky, acts 
on the mass

y=0
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Mechanical Systems II

• From Newton’s second law, F = ma, we 
obtain md2y/dx2 = -ky; k units are N/m
– In standard form d2y/dx2 +(k/m)y = 0; k/m 

has units of N/(m·kg) = kg·m/s2 /(m·kg) = s-2

– Here α = 0 and β = k/m > α2 so we have 
complex roots with 2 = β - α2/2 = k/m - 0

– Solution is e0[Asin t + Bcos t]
– Initial conditions determine constants:        

B = y0 =  y(0) and A = v0/ = y’(0)/
– y = (y’(0)/) sin t + y(0) cos t
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Alternative Formulations

• Can make solution dimensionless by 
dividing by initial displacement, y0

• y/y0 = v0/(y0)sin t + cos t, where  = 
(k/m)1/2 has correct units of s-1

• Plot shown on next chart

• Can also write solution in terms of only 
the cosine: y = C cos(t – )
– Details shown on chart after next
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Alternative Formulations

  tCtCtCy  coscossinsincos 

tBtAy  cossin 

• Proposed alternative with equation from 
trigonometry for cos(a – b)

• How does this match original equation?

• Matches if A = C sin  and B = C cos 
• This gives A2 + B2 = C2 sin2  + C2 cos2 

= C2 and  A/B = (C sin )/(C cos ) = 
tan  or   = tan-1(A/B) = tan-1(v0/y0 )
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Add Damping

• A damping (friction) force is assumed to 
be proportional to velocity, y’ = dy/dt

• Damping coefficient, c, gives F = -c y’

• c units are N·s/m = kg·m/s2 ·(s/m)= kg/s

• Minus sign is used because force 
retards motion

• Newton’s second law now becomes 
md2y/dt2 = –ky – cdy/dt

26

Solutions with Damping

• Standard form for with damping is 
d2y/dt2 + (c/m)dy/dt + (k/m)y = 0

• This is constant coefficient equation 
with α = c/m and β = k/m

• α2 – 4β = (c/m)2 – 4 k/m

• k/m has units of s-2

• c/m units are (kg/s)/kg = s-1, consistent 
with calculation of (c/m)2 - 4 k/m
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Solutions with Damping II

• d2y/dt2 + (c/m)dy/dt + (k/m)y = 0

• d2y/dt2 + αdy/dt + βy = 0

• If 4 km/c2 = 1, we have a double root 
with solution y = (C1 + C2t)e-ct/2m

• If 4 km/c2 > 1, complex roots give 
solution y = e-ct/2m (A sin t + B cos t)
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Solutions with Damping III

• d2y/dt2 + (c/m)dy/dt + (k/m)y = 0

• d2y/dt2 + αdy/dt + βy = 0

• 4 km/c2 < 1 gives two real roots (both 
negative) in solution y = C1e

1
t + C2e

2
t

• Look at names for each solution and 
alternative expression of conditions
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Solutions with Damping IV

• Conditions for solutions comparing 
4km/c2 to 1 can be written in terms of c2

and 4km or (c/m)2 and 4 k/m 
• Double root occurs when c2 = 4km is 

called critical damping
• Complex roots occur when c2 < 4km is 

called under damping
• Two distinct real roots occur when c2 > 

4km is called over damping
• Look at each solution with initial 

conditions y(0) = y0 and y’(0) = v0
30

Over Damping

• Two real roots, both negative

• y = C1e
1
t + C2e

2
t

• y’ = C1 1e
1
t + C2 2e

2
t

• y0 = y(0) = C1e
1
0 + C2e

2
0 = C1 + C2

• v0 = y’(0) = C1e
1
0 + C22e

2
0 = C1 + 

C22; solve two equations for C1 and C2

• C1 = (2y0 – v0)/(2 – )
• C2 = (v0 – y0)/(2 – )
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Get Dimensionless Parameters

• Divide numerator and denominator of 
C1 and C2 by 

• Substitute result for C1 and C2 into 
original equation

• Divide both sides of equation by y0
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Over Damping Results

• Take 2 to be larger solution 
• Coefficients depend on km/c2 and 

mv0/cy0
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Over Damping Results II

• Solutions for y/y0 depend on three 
parameters: ct/m, km/c2 and mv0/cy0

• ct/m is dimensionless time, but 
exponential decay, et, has t exponent 
of –ct[1  (1 – 4km/c2)1/2]/2m that 
depends on km/c2

• Look at plots of y/y0 versus ct/m with 
mv0/cy0 as a parameter 

• Different charts for different damping 
measured as km/c2

Overdamping with 4km/c2 = 0.1
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Critical Damping (c2 = 4km)

• Double root: y0 = (C1 + C20)e-c0/2m = C1

• y’ = (y0 + C2t)(-c/2m)e-ct/2m + C2e-ct/2m

• v0 = y’(0) = (-c y0 /2m) + C2

• y = [y0 + (v0 + c y0/2m)t]e-ct/2m

• Boundary between over and under damp-
ing, y/y0 depends on ct/m and mv0/cy0

• y/y0 = [1 + v0t/y0 + ct/2m]e-ct/2m

• y/y0 = [1 + (2mv0/cy0 + 1)ct/2m]e-ct/2m

Critical Damping

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10

dimensionless time ct/m

y
/y

0

v* = 1.0

v* = 0.5

v* = 0.0

v* = -0.5

v* = -1.0

v* = 
dimensionless 
initial velocity = 

mv0/cy0

39

Under Damping 

• y = e-ct/2m[A sin t + B cos t]
• y’ = (-c/2m)e-ct/2m[A sin t + y0 cos t] + 

e-ct/2m [A cos t - B sin t] 
• Initial conditions: y(0) = y0 and y’(0) = v0

• y0 = e-c0/2m[A sin 0 + B cos 0] = B
• v0 = y’(0) = (-c/2m)e-c0/2m [A sin 0 + B 

cos 0] + e-c0/2m [A cos 0 - B sin 0] 
• v0 = (-c/2m)B + A
• Results: B = y0 and A = (v0 + c y0/2m)/
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Under Damping II 

• Divide by y0 for equation in y/y0

• y/y0 = e-ct/2m[(v0/y0 + c/2m)(sin t)/ + cos t]

• = (c/2m)(4km/c2 – 1)1/2

• t = (ct/2m)(4km/c2 – 1)1/2

• (v0/y0 + c/2m)/ = (v0/y0 + c/2m) / (c/2m) / 
(4km/c2 - 1)1/2 =(2mv0/cy0 + 1) / (4km/c2 -
1)1/2

• y/y0 depends on ct/m, km/c2, and mv0/cy0
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Underdamping 4km/c2 = 10
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Underdamping 4km/c2 = 50
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