2

Linear Homogenous Second-**Order Differential Equations**

Larry Caretto Mechanical Engineering 501A **Seminar in Engineering Analysis**

October 2, 2017

Northridge

Outline

- Review last class
- Second-order linear differential equations
 - Homogenous equations with constant coefficients: y'' + ay' + by = 0
 - General solution has three different forms depending on $a^2 - 4b$
 - Applications to spring-mass systems · Overdamped and underdamped systems

Northridge

Review definitions

- Ordinary versus partial
- · Linear versus nonlinear
- · Order of the equation
- · Homogenous versus non-homogenous
- · Physical problems: rate equations and Newton's second law $md^2y/dt^2 = F$
- · General versus particular solutions

Northridge

Review ODE Examples

- Third-order, linear, $\frac{d^3y}{dx^3} + \sin(x)\frac{dy}{dx} x^2y = 0$
- $\frac{d^2y}{dx^2} + \sin(y) = 0$ Second-order, nonlinear, homogenous
- Second-order, linear, non-homogenous $\frac{d^2y}{dx^2} + y = e^x \cos(x)$ non-homogenous
- Third-order, non-linear, $\frac{d^3y}{dx^3} + y\frac{dy}{dx} = 1$ non-homogenous

Northridge

Review Separable Forms

- Simple differential equations can be written as integrals
 - Even if numerical quadrature is required this is more accurate than numerical solution of ODE

$$\frac{dy}{dx} = f(x) \implies y = \int f(x)dx + C$$

$$\frac{dy}{dx} = f(x)g(y) \implies \int g(y)dy = \int f(x)dx + C$$

$$\frac{dy}{dx} = h\left(\frac{y}{x}\right) \implies \int \frac{dx}{x} = \int \frac{du}{h(u) - u} + C$$
Northridge

Review Exact Forms

- Differential equation of the form P(x,y)dx + Q(x,y)dy = 0 is called an exact form if $\partial P/\partial v = \partial Q/\partial x$
- · Special solution process available in this case
- May be able to find find integrating factors if P(x,y)dx + Q(x,y)dy = 0 is not exact

Northridge

Review First-order Equations

- · First order rate equation where rate is proportional to amount dy/dt = -ky
- $y = y_0 e^{-k(t-t_0)}$
- · General linear first order equation for y(x): dy/dx + f(x)y = g(x) has closed form solution shown below
- · C is found from initial condition

$$p = \int f(x)dx$$

$$p = \int f(x)dx \qquad \qquad y = e^{-p} \left[C + \int e^{p} g(x) dx \right]$$

Northridge

Review Existence/Uniqueness

- · Important because we can try numerical solution of an ODE with no solution
- Examine dy/dx = f(x,y) with $y(x_0) = y_0$ in a region $|x - x_0| < a$ and $|y - y_0| < b$
- Derivate is bounded: |f(x,v)| ≤ K
- Equation has a solution in region $|x x_0|$ < min(a, b/K)
- Uniqueness requires $|\partial f/\partial y| \le M$

Northridge

Review Second Order ODEs

 Most general Most general requires numerical $\phi \left(\frac{d^2y}{dx^2}, \frac{dy}{dx}, y, x \right) = 0$ solution

$$\phi \left(\frac{d^2 y}{dx^2}, \frac{dy}{dx}, y, x \right) = 0$$

 Linear nonhomogenous

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x)$$

 Linear homogenous

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$

 Constant coefficient

$$\frac{d^2y}{dx^2} + \alpha \frac{dy}{dx} + \beta y = 0$$

Northridge

Review Linear Homogenous

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$

- · A basis of solutions for this equation is any two linearly independent solutions y_1 and y_2
- y = c₁y₁ + c₂y₂ is a general solution where c₁ and c₂ can be used to fit initial or boundary conditions
 - Initial conditions specify y(0) and y'(0)
 - Boundary conditions specify y(a) and y(b)

Northridge

Review Constant Coefficients

· Seek solution to

$$c\frac{d^2y}{dx^2} + d\frac{dy}{dx} + ey = 0 \qquad \Rightarrow \qquad \frac{d^2y}{dx^2} + \alpha\frac{dy}{dx} + \beta y = 0$$

• Solution is $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$

$$\lambda_1 = \frac{-\alpha + \sqrt{\alpha^2 - 4\beta}}{2}$$

$$\lambda_1 = \frac{-\alpha + \sqrt{\alpha^2 - 4\beta}}{2} \qquad \lambda_2 = \frac{-\alpha - \sqrt{\alpha^2 - 4\beta}}{2}$$

· Verified solution by substitution into differential equation

Northridge

Special Cases

- What if solutions λ_1 and λ_2 are a double root ($\lambda_1 = \lambda_2$) or complex roots?
- Complex roots: $\omega^2 = \beta (\alpha/2)^2 > 0$
 - give two linearly independent solutions
 - Can rewrite in terms of sines and cosines
- Double root: $\lambda_1 = \lambda_2 = -\alpha/2$
 - gives only one linearly independent solution
 - Must find another solution for basis

California State University
Northridge

Double Root

- Given y₁, use method called reduction of order to find second solution y₂
- Let $y_2 = uy_1$ so that $y_2' = u' y_1 + uy_1'$ and y_2 " = u" y_1 + 2 u' y_1 ' + u y_1 '
- Substitute into y_2 " + αy_2 ' + βy_2 = 0
- Result, $(u'' y_1 + 2 u' y_1' + u y_1'') + \alpha[u' y_1 + u' y_1'']$ uy_1] + βuy_1 = 0, is rearranged below
- $u[y_1" + \alpha y_1' + \beta y_1] + u" y_1 + 2 u' y_1' +$ $\alpha u'y_1 = 0$ Equals zero because y₁

Northridge

is a solution of the ODE

Double Root II

- Solve: $u'' y_1 + 2 u' y_1' + \alpha u' y_1 = 0$
- Substitute $y_1 = e^{\lambda x} = e^{-\alpha x/2}$ and define U = u' so that $y_1' = (-\alpha/2)e^{-\alpha x/2}$ and u" = U'
- U' $e^{-\alpha x/2} + 2U (-\alpha/2) e^{-\alpha x/2} + \alpha U e^{-\alpha x/2} = 0$
- After division by $e^{-\alpha x/2}$ result is U' + $(-\alpha)$ $+ \alpha)U = U' = u'' = 0$
- If u'' = 0, $u' = C_1$ and $u = C_1x + C_2$ so y_2 = $uy_1 = (C_1x + C_2)y_1 = (C_1x + C_2) e^{-\alpha x/2}$

Northridge

Double Root III

- Results for double root are $y_1 = e^{-\alpha x/2}$ and $y_2 = (C_1 x + C_2) e^{-\alpha x/2}$
- These are two linearly-independent solutions to our ODE
 - Can use any linear combination of y₁ and y₂
 - Take C_2y_1 and $y_2 C_2y_1$ as solutions
 - Gives $C_2e^{-\alpha x/2}$ and $C_1xe^{-\alpha x/2}$ as the two linearly independent solutions
 - General solution is $(C_1x + C_2) e^{-\alpha x/2}$

Northridge

Complex Roots

- · Still have linearly independent general case solutions: $y_1 = e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$
- Complex roots are $-\alpha/2 \pm i\omega$ where $i^2 =$ -1 and $\omega^2 = \beta - (\alpha/2)^2 > 0$
- Get solution with more insight by using Euler formula for complex exponential
- $e^{ix} = \cos x + i \sin x$
- $e^{-ix} = \cos x i \sin x$

Northridge

Complex Roots II

- General solution: $y = C_1y_1 + C_2y_2$ with $y_1 =$ $e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$ and $\lambda = -\alpha/2 \pm i\omega$
- $y = C_1 e^{(-\alpha x/2 + i\omega)x} + C_2 e^{(-\alpha x/2 i\omega)x}$
- $y = e^{-\alpha x/2} [C_1 e^{i\omega x} + C_2 e^{-i\omega x}]$
- Apply Euler formula to e^{iωx} and e^{-iωx}
- $y = e^{-\alpha x/2} [C_1(\cos \omega x + i \sin \omega x) + C_2(\cos \omega x)]$ $- i \sin \omega x$)] = $e^{-\alpha x/2} [(C_1 + C_2)\cos \omega x + i(C_1)]$ $-C_2$)sin ωx] = $e^{-\alpha x/2}$ [Acos ωx +Bsin ωx]

Northridge

Solutions to $y'' + \alpha y' + \beta = 0$

- Three cases depending on $\omega^2 = \beta \alpha^2/4$
- Double root when $\beta = \alpha^2/4$:

 $-y = (C_1x + C_2) e^{-\alpha x/2}$

- Complex roots when $\beta > \alpha^2/4$ $-y = e^{-\alpha x/2} [A\cos \omega x + B\sin \omega x]$
- Distinct real roots when $\beta < \alpha^2/4$

$$-y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

$$\lambda = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2} = \frac{-\alpha}{2} \pm \sqrt{\frac{\alpha^2}{4} - \beta} = -\frac{\alpha}{2} \left(1 \mp \sqrt{1 - \frac{4\beta}{\alpha^2}} \right)$$

Solving $y'' + \alpha y' + b = 0$

- First determine which solution you have based on α and β values
 - $-\beta = \alpha^2/2$: y = (C₁x + C₂) e^{-\alpha x/2}
 - $-\beta > \alpha^2/2$: y = $e^{-\alpha x/2}$ [Acos ωx +Bsin ωx]
 - $-\beta < \alpha^2/2$: y = C₁e^{$\lambda_1 x$} + C₂e^{$\lambda_2 x$}
- Compute ω or as λ_1 and λ_2 as required
- Use initial or boundary conditions to evaluate constants

Northridge

Northridge

Example: Mechanical Systems

- Simplest system is a spring mass system where the Hooke's law force is the spring constant times the displacement of the spring from equilibrium
- Choose a y coordinate as follows
 y is zero when the spring-mass system is in static equilibrium
 - as y increases, spring length increases and a force, F = -ky, acts on the mass

California State University
Northridge

20

Mechanical Systems II

- From Newton's second law, F = ma, we obtain md²y/dx² = -ky; k units are N/m
 - In standard form $d^2y/dx^2 + (k/m)y = 0$; k/m has units of $N/(m \cdot kg) = \frac{kg \cdot m}{s^2} / \frac{(m \cdot kg)}{s} = s^{-2}$
 - Here α = 0 and β = k/m > α^2 so we have complex roots with ω^2 = β $\alpha^2/2$ = k/m 0
 - Solution is e⁰[Asin ωt + Bcos ωt]
 - Initial conditions determine constants: B = y_0 = y(0) and A = v_0/ω = $y'(0)/\omega$
 - $-y = (y'(0)/\omega) \sin \omega t + y(0) \cos \omega t$

Northridge

Alternative Formulations

- Can make solution dimensionless by dividing by initial displacement, y₀
- $y/y_0 = v_0/(\omega y_0)\sin \omega t + \cos \omega t$, where $\omega = (k/m)^{1/2}$ has correct units of s⁻¹
- Plot shown on next chart
- Can also write solution in terms of only the cosine: y = C cos(ωt – δ)
 - Details shown on chart after next

Northridge

2

Alternative Formulations

- Proposed alternative with equation from trigonometry for cos(a – b)
- $y = C\cos(\omega t \delta) = C\sin\delta\sin\omega t + C\cos\delta\cos\omega t$
- How does this match original equation?
 y = Asin ωt + B cos ωt
 - Matches if A = C sin δ and B = C cos δ
 - This gives $A^2+B^2=C^2\sin^2\delta+C^2\cos^2\delta$ = C^2 and $A/B=(C\sin\delta)/(C\cos\delta)=$ $\tan\delta$ or $\delta=\tan^{-1}(A/B)=\tan^{-1}(v_0/y_0\omega)$

Add Damping

- A damping (friction) force is assumed to be proportional to velocity, y' = dy/dt
- Damping coefficient, c, gives F = -c y'
- c units are N·s/m = $kg \cdot m/s^2 \cdot (s/m) = kg/s$
- Minus sign is used because force retards motion
- Newton's second law now becomes md²y/dt² = -ky - cdy/dt

Northridge

25

Solutions with Damping

- Standard form for with damping is d²y/dt² + (c/m)dy/dt + (k/m)y = 0
- This is constant coefficient equation with α = c/m and β = k/m
- $\alpha^2 4\beta = (c/m)^2 4 k/m$
- k/m has units of s-2
- c/m units are (kg/s)/kg = s⁻¹, consistent with calculation of (c/m)² - 4 k/m

Northridge

26

Solutions with Damping II

- $d^2y/dt^2 + (c/m)dy/dt + (k/m)y = 0$
- $d^2y/dt^2 + \alpha dy/dt + \beta y = 0$

$$\lambda = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2} = -\frac{c}{2m} \pm \sqrt{\frac{c^2}{4m^2} - \frac{k}{m}} = -\frac{c}{2m} \left(1 \mp \sqrt{1 - \frac{4km}{c^2}} \right)$$

- If 4 km/c² = 1, we have a double root with solution y = (C₁ + C₂t)e^{-ct/2m}
- If 4 km/c² > 1, complex roots give solution $y = e^{-ct/2m}$ (A sin $\omega t + B \cos \omega t$)

California State University
Northridge

$$\omega = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}} = \frac{c}{2m} \sqrt{\frac{4km}{c^2} - 1}$$

Solutions with Damping III

- $d^2y/dt^2 + (c/m)dy/dt + (k/m)y = 0$
- $d^2y/dt^2 + \alpha dy/dt + \beta y = 0$

$$\lambda = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2} = -\frac{c}{2m} \pm \sqrt{\frac{c^2}{4m^2} - \frac{k}{m}} = -\frac{c}{2m} \left(1 \mp \sqrt{1 - \frac{4km}{c^2}} \right)$$

- 4 km/c² < 1 gives two real roots (both negative) in solution y = C₁e^{λ₁t} + C₂e^{λ₂t}
- Look at names for each solution and alternative expression of conditions

Northridge

28

Solutions with Damping IV

- Conditions for solutions comparing 4km/c² to 1 can be written in terms of c² and 4km or (c/m)² and 4 k/m
- Double root occurs when c² = 4km is called critical damping
- Complex roots occur when c² < 4km is called under damping
- Two distinct real roots occur when c² > 4km is called over damping
- Look at each solution with initial conditions $y(0) = y_0$ and $y'(0) = v_0$

Northridge

Over Damping

- · Two real roots, both negative
- $y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$
- $y' = C_1 \lambda_1 e^{\lambda_1 t} + C_2 \lambda_2 e^{\lambda_2 t}$
- $y_0 = y(0) = C_1 e^{\lambda_1 0} + C_2 e^{\lambda_2 0} = C_1 + C_2$
- $v_0 = y'(0) = C_1\lambda_1e^{\lambda_10} + C_2\lambda_2e^{\lambda_20} = C_1\lambda_1 + C_2\lambda_2$; solve two equations for C_1 and C_2
- $C_1 = (\lambda_2 y_0 v_0)/(\lambda_2 \lambda_1)$
- $C_2 = (v_0 \lambda_1 y_0)/(\lambda_2 \lambda_1)$

Northridge

30

Get Dimensionless Parameters

- Divide numerator and denominator of C_1 and C_2 by λ_1
- Substitute result for C₁ and C₂ into original equation
- Divide both sides of equation by y₀

$$\frac{y}{y_0} = \frac{\frac{\lambda_2}{\lambda_1} - \frac{v_0}{y_0 \lambda_1}}{\frac{\lambda_2}{\lambda_1} - 1} e^{\lambda_1 t} + \frac{\frac{v_0}{y_0 \lambda_1} - 1}{\frac{\lambda_2}{\lambda_1} - 1} e^{\lambda_2 t} \qquad \lambda t = \frac{\binom{ct}{2m}}{\binom{1}{2m}} e^{\frac{\lambda_2}{2m} - 1} e^{\frac{\lambda_2$$

Northridge

Northridge

Over Damping Results

- Take λ_2 to be larger solution
- Coefficients depend on km/c² and
 my /ov/

$$\frac{mv_0/cy_0}{\lambda_1} = \frac{-\frac{c}{2m}\left(1 + \sqrt{1 - \frac{4km}{c^2}}\right)}{-\frac{c}{2m}\left(1 - \sqrt{1 - \frac{4km}{c^2}}\right)} = \frac{1 + \sqrt{1 - \frac{4km}{c^2}}}{1 - \sqrt{1 - \frac{4km}{c^2}}}$$

$$\frac{v_0}{c} = \frac{v_0}{c} = \frac{c}{c} = \frac{c}{c} \frac{mv_0}{c} = \frac{c}{c} \frac{mv$$

California State University
Northridge

32

Over Damping Results II

- Solutions for y/y₀ depend on three parameters: ct/m, km/c² and mv₀/cy₀
- ct/m is dimensionless time, but exponential decay, $e^{\lambda t}$, has λt exponent of $-ct[1\pm(1-4km/c^2)^{1/2}]/2m$ that depends on km/c^2
- Look at plots of y/y₀ versus ct/m with mv₀/cy₀ as a parameter
- Different charts for different damping measured as km/c²

33

Northridge

Critical Damping ($c^2 = 4km$)

- Double root: $y_0 = (C_1 + C_2 0)e^{-c0/2m} = C_1$
- $y' = (y_0 + C_2 t)(-c/2m)e^{-ct/2m} + C_2 e^{-ct/2m}$
- $v_0 = y'(0) = (-c y_0 / 2m) + C_2$
- $y = [y_0 + (v_0 + c y_0/2m)t]e^{-ct/2m}$
- Boundary between over and under damping, y/y₀ depends on ct/m and mv₀/cy₀
- $y/y_0 = [1 + v_0 t/y_0 + ct/2m]e^{-ct/2m}$
- $y/y_0 = [1 + (2mv_0/cy_0 + 1)ct/2m]e^{-ct/2m}$

Northridge

Northridge

37

Under Damping

- $y = e^{-ct/2m}[A \sin \omega t + B \cos \omega t]$
- $y' = (-c/2m)e^{-ct/2m}[A \sin \omega t + y_0 \cos \omega t] + e^{-ct/2m}[A \cos \omega t B \sin \omega t] \omega$
- Initial conditions: $y(0) = y_0$ and $y'(0) = v_0$
- $y_0 = e^{-c0/2m}[A \sin 0 + B \cos 0] = B$
- $v_0 = y'(0) = (-c/2m)e^{-c0/2m}[A \sin 0 + B \cos 0] + e^{-c0/2m}[A \cos 0 B \sin 0] \omega$
- $v_0 = (-c/2m)B + \omega A$
- Results: B = y_0 and A = $(v_0 + c y_0/2m)/\omega$

Northridge

Under Damping II

- Divide by y₀ for equation in y/y₀
- $y/y_0 = e^{-ct/2m}[(v_0/y_0 + c/2m)(\sin \omega t)/\omega + \cos \omega t]$
- $\omega = (c/2m)(4km/c^2 1)^{1/2}$
- $\omega t = (ct/2m)(4km/c^2 1)^{1/2}$
- $(v_0/y_0 + c/2m)/\omega = (v_0/y_0 + c/2m) / (c/2m) / (4km/c^2 1)^{1/2} = (2mv_0/cy_0 + 1) / (4km/c^2 1)^{1/2}$
- y/y_0 depends on ct/m, km/c^2 , and mv_0/cy_0

Northridge

